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When you commence the statistical analysis of
data the first obvious question is: “What does

statistics mean?” Quite simply, statistics is the set of
calculated relationships based on data from an adequate
sample that should be a representative part of a
population.

We can divide statistics, didactically, into two
groups: 1 - Descriptive; 2 - Inferential.  In descriptive
statistics, the goal is simply to describe the sample in
question.  The description is usually seek to summarize
the data obtained in frequencies expressed as a
percentage, means, and standard deviations through
graphics.  With most scientific work, what you see
are these descriptive statistics.  Most of these studies
are limited to reviews of patient charts and records,
and do not involve hypotheses to be tested.  The role
of inferential statistics is to transfer or generalize the
findings of the sample to the population.  To be more
specific, our primary routine interest is to compare
data between two or more groups to see if there was
a statistically significant difference.

 It is worth commenting a little about what is
statistical significance. If someone says that the chance
of something happening is 1 in 100 (which we express
as a probability of 0.01 or p = 0.01), should this be
considered a high or low probability?  It depends. If
this were the chance/probability of a plane crashing,
one would have to agree that chance is high.  But if
this is the chance of failure in improvement of
headache after taking an aspirin, the probability of
failure is low. Who determines the level of significance
is the researcher.  In the academic world, by
convention, if the chance of something happening is
less than 5% (p <0.05) then it is considered unlikely to
happen. For example, in a study of a new diuretic, we
randomly assigned 30 people to the active drug group

and 30 people to the placebo (inert medication) group.
The mean 24 hour urine volume in was 3600 ml in the
first group and 3400 ml in the second group.

As there is a difference of 200 ml, on average,
in urine output, can we say that the drug actually works
as a diuretic? Of course not!  It is necessary to perform
the appropriate statistical test (in this case we can use
the Student’s t-test) and see what the probability is that
this distribution had occurred entirely by chance.

At the time of composition of the two groups,
it is possible that by chance we had chosen for the
group that received the active drug individuals who
naturally have a higher 24 hour urine output?  Or is it
possible that this did not occur and the drug was indeed
really effective?

To help resolve this question, statistical tests
are used so that we can know in a given study, what
is the probability that the distribution of subjects (which
yielded the observed difference in urine output) had
occurred by chance alone. After performing the
Student’s t-test, we found that the probability of finding
a difference of 200 ml (1600 ml - 1400 ml) in this
sample of 60 (30 + 30) subjects is 3% (p = 0.03),
therefore p <0.05.

As already stated, we consider this unlikely
occurrence, i.e., it is unlikely (p = 0.03) that this
distribution occurred by chance, so we should must
have another explanation for the question and until
proven otherwise the 200 ml difference in the average
was because of the active drug.

And note: we still have a 3% chance that this
difference had occurred by chance and not because
of the active drug.  This is the risk (type I error or
alpha) that one runs in any hypothesis testing.

However, if after performing the Student’s
t-test we were to find a p = 0.15 (and thus a p >
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0.05) instead of p = 0.03 (that we calculated in the
example above), we would conclude that the chance
that the distribution of subjects into the two groups was
random is not small (p> 0.05), therefore we could not
affirm that the active drug had an effect.  In this
scenario, because the result is not significant, one should
consider the power of the statistical test, which should
be calculated a priori (before conducting the study).

The smaller the sample, the weaker the power
to affirm/say that the treatment does not work, i.e.,
the treatment can be in fact effective, but the small
number of participants in the does not allow us to say
that statistical significance was attained.  If the power
is less than 80% (there are specific formulas to
calculate it) we may be faced with a false p > 0.05,
that is, p could be less than 0.05, but the sample may
have been too small to achieve such a probability –
which is a Type II error or beta.

How to choose the appropriate statistical
test

Since we now know what the p provided by
statistical tests is used for, let us now turn our attention
to when to use a particular test.  For this it is essential
that we know what level of measurement of the
variables involved.  We can divide into three groups: 1
- Nominal, 2 - Ordinal, 3 - Interval/Ratio.

For nominal variables, the number is not a
numerical value, but rather corresponds to a category,
for example: 1 = single, 2 = married, 3 = separated, 4
= divorced, and 5 = widowed.  These numbers merely
designate different categories. You cannot add or
subtract them or calculate means.  The statistical tests
most commonly used in these cases are the chi-square
(÷2) and Fisher’s test, the latter used mainly for very
small samples.

With ordinal numbers, the values can be
ordered (e.g. from lowest to highest), but one should
not calculate means or standard deviations.  For
example, in the classification of endometriosis, the
patient who receives 40 points does not have twice
the endometriosis of patient who received 20 points,
although it can be said that the first has more
endometriosis than the second.

Another example is the score that is given to
a scale of post-operative pain: 1 = low, 2 = medium,
etc.  The most commonly used tests are the Mann-
Whitney U (for two groups) and Kruskal-Wallis (three
or more groups).  These statistical tests do not use
the parameters of the population (and thus don’t

require, for example, a normal distribution) and are
called non-parametric tests.

The third group includes interval and ratio
variables. The basic difference is that with ratio
variables the zero is absolute (e.g., weight) and with
interval variables the zero is relative (e.g., temperature
in Celsius).  The statistical tests used for these two
types of variables are usually the same. In this group
the numbers are actually numbers; they can be
summed, subtracted, divided, multiply, can means and
standard deviations calculated.  They can be
continuous (e.g. weight in kg) or discontinuous (e.g.
number of children: 1, 2, 3, etc.).

In these cases, 4 kg is twice 2 kg, just as four
children is the product of two times two. The statistical
tests most commonly used are the Student’s t-test (for
two groups) and the test of analysis of variance (three
or more groups).  As these tests use the population
parameters (notably mean and standard deviation), and
assume that the population has a normal distribution,
they are called parametric tests.

Understanding confidence intervals
Another issue that deserves to be addressed is

the confidence interval.  In order to understand the
confidence interval we must first understand the
standard error of the mean (SEM).  It was already
mentioned that a researcher works with samples of a
population, and that through the data of these samples
seeks to understand the population (by extrapolation of
the data or generalization). The best samples are those
selected at random from the population in question. It
turns out that these samples are different from each
other.  For example, suppose that researcher A wants
to know the average weight of the doctor of a given
hospital.  In this hospital 100 doctors work in five
different specialties (a, b, c, d, e), each with 20 physicians.

Researcher A decides to randomly select five
doctors in each specialty, a total of 25 doctors – a
sample stratified by specialty.  The average weight
encountered with this sample was 68 Kg.  Another
researcher, called B, decides to do a study identical to
that of Research A. Researcher B obtained an
average of 70 kg pounds.  Since he also selected his
subjects randomly, obviously were not the same
individuals.

Researcher C in an identical study found an
average weight of 72 kg.  Is there something wrong
with the averages obtained?  No, it is merely that the
individuals selected at random for each sample are
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not the same.  Therefore, when a researcher selects
his sample, he knows that there are many other
samples that will yield means different from that which
he will obtain. The number of different samples is
practically infinite. If we continue to generate other
similar samples, we will have various means (e.g., 66
kg, 68 kg, 70 kg, 72 kg, and 74 Kg) which collectively
have the property of a normal distribution.

There is a statistical property that says the
average of all these averages is equal to the average
of the population, which would be the true mean if all
100 doctors were weighed.  Let’s say that another
researcher D with more time decided to measure the
weight of all the doctors and found a mean 70 kg.
The various means calculated for the samples obtained
by the other researchers will have a normal distribution
around the actual average population. We know its 70
pounds thanks to researcher D.

The average standard deviation of the possible
means is called the standard error of mean (SEM).
This error expresses the variability that can be found in
the mean of a sample of a certain size, because, as we
already discussed, the average of a sample is usually
not identical to the true mean of the population.  The
confidence interval is nothing more than the degree of
confidence that the researcher has that the population
mean (true mean) is contained within that interval.
Usually the confidence interval used is 95% (a = 5%).

The researcher who obtained an average of
68 kg in his sample would say the average of population
(100 physicians) must be between 68 kg plus or minus
some error.  This error can be calculated using the
correct value of the t distribution for a range of 95%,
or an a = 5%. For a sample of 25 individuals the value
provided by t-distribution table is 2.06. This value must
be multiplied by the standard error of the mean (SEM),
which can be calculated by dividing the standard
deviation of the sample by the square root of the
number of individuals in the sample.

If the SEM was equal to 1, the error would
be equal to 2.06.  Therefore we would have 95%
certainty that the population mean was between 68 ±
2.06 kg, or approximately between 66 and 70kg.  In
this case the 95% confidence interval includes the true
mean - 70kg.

We must not confuse the SEM with the
standard deviation (SD).  The first, as was already
explained, expresses the variability, the uncertainty,
of the average obtained from a sample. The SD ex-
presses the variability of the individuals (not the

averages) selected around the sample mean.  In the
case of Researcher A, the SD is calculated as follows:
take the weight of each of the 25 physicians chosen,
subtract the mean found (68 kg), and calculate the
square of this difference. If a person weighs 98 m kg,
you should subtract 68 Kg from 98 Kg and raise this
result to the square, or 302.

Next, sum of all these squares of the
differences and divide by the number of individuals
minus one (in this case: 25-1 = 24). The resulting value
is called the variance. Then just find the square root
of the variance. This number is the standard deviation
of the sample.  As noted above, to obtain the SEM,
divide the SD by the square root of N (in this case the
square root of 25).

The smaller the sample the wider the
confidence interval, with consequently less credibility
for the value obtained.  For example, say Researcher
A obtained a mean of 68 kg and a 95% confidence
interval of ± 2 kg. Therefore, he can have a 95%
confidence that the population mean is between 66 kg
and 70 kg.  In this example the true mean (70 kg)
really is within this range.

If instead of five doctors, he selects only one
physician from each specialty (a total of 5 doctors)
and by chance obtains the same average of 68 kg, the
95% confidence interval would rise, for example, from
± 2 kg to ± 8 kg, and the researcher would have to
publish his results as 68 ± 8 kg (95% CI), a range
which also includes the true mean.  The problem is
that most of the time we don’t know what is the true
mean; thus, the  less uncertainty, reflected by a
narrower confidence interval, the better.

Common problems with statistical tests
Let us now review some common problems

in the application of statistical tests.  One of the most
widely used is the Student’s t-test. This test is used
to compare means of two groups when the variable
measured is an interval or ratio variable and the
sample has a normal distribution. It is not appropriate
to use this test for ordinal variables (e.g. scoring
postoperative pain) or if the sample data does not
have a normal distribution.  In the case of ordinal
variables we should use a non-parametric test simi-
lar to the Student’s t-test (for example, the Mann-
Whitney test) and in the second case we can use
the Mann-Whitney or transform the variable (log,
square root, among others...) so that it assumes a
normal distribution.
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Another common mistake made with the
Student’s t-test is the two-by-two comparisons made
sequentially when you have three or more groups.  For
example, when comparing the average weight of three
different groups (A, B, C) the researchers used the
Student’s t-test to compare the average in group A
with the average of group B, then B with C, and  later
A with C.  The researcher typically assumes a 5%
error for each comparison, with an overall error of
15%, which is unacceptable. The correct approach
would be to use the analysis of variance (ANOVA)
to compare the average of the three groups and see if
there are differences.  Using ANOVA we can detect
that there is an overall difference, but do not know
which group differs from which.  To determine which
group differs from the others we could use the
Student’s t-test comparing each pair of groups, taking
care not to commit the error of multiple comparisons.

For this you can use various statistical artifices,
such as corrections proposed by Bonferroni, Tukey
and Student-Newman-Keuls, among others.  Another
error in the choice of statistical tests is not considering
whether the groups are dependent (paired) or
independent. There is a different Student’s t-test for
each of these situations.  The incorrect use can lead
to a distortion of the results and consequently of the
conclusions.  The paired groups usually are formed
by comparing a group before treatment with the same
group after treatment.Listen

Finally it is important to mention some
advantages of multivariate analysis over univariate
analyses. So far we commented only about univariate
statistical tests.  The principal  disadvantage of tests
such as chi-square, Fisher’s test, and the Student’s t-
test, is that they do not do provide a comprehensive
approach to the problem.  Most biological experiments
are complex and often there are interactions between
the causal factors.

For example, in a study to determine whether
a drug is effective for losing weight, obese individuals
are selected into the treatment group and control
group. After statistical analysis with Student’s t-test
compared the decrease in weight in both groups, it
was determined that the treatment group’s weight loss
is superior.

However, when analyzed with multivariate
tests, one finds that the medication in question had

no effect on weight loss when the analysis controlled
(or adjusts) the experiment for the degree of desire
to lose weight, which was measured in the
questionnaire.

This statistical control is possible using
techniques like multiple regression. With this technique
it is possible to evaluate several variables at
simultaneously - one controls the effect of the other.
Even if the Student’s t-test has been applied correctly,
the conclusion of the test was flawed because it does
not take into account other variables that influence
weight loss.

By univariate analysis the desire to lose weight
was also statistically significant and, therefore, the
researcher publishes that both the desire to lose weight
and the medication are effective.  However, as was
verified in the multivariate analysis, the effect of the
desire to lose weight (for example if the patient
adheres more rigorously to a diet) nullified the effect
of the medication.

This is because almost all of the weight loss
effect could be explained by the desire to lose weight;
the additive effect of the medication was not enough
to be significant.  This scenario can only be detected
by the multivariate technique.

The multivariate statistical tests are more
complex and laborious, and require a good knowledge
of statistics for their proper use and interpretation.
Poorly implemented and interpreted they can confuse
rather than help.  But without doubt, they are valuable
resources in the pursuit of the scientific truth.
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